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In this article an approximate method of solving the problem of 
equilibrium of a system of parallel cracks in an elasto-brittle body is 
proposed. 

Let an infinitely isotropic elastic body contain an infinitely 
large number of cracks parallel to the axis of abscissas and spaced at 
a distance of 2h between each other. Inside each crack a constant pres- 
sure p is acting along a segment a, but there is no stress acting on the 
remaining portion of the crack or at infinity. The crack length may be 
arbitrary. Due to the symmetry of the system our considerations may 
be confined to a band 0 -< y -< h whose lower edge coincides with the 
longitudinal crack axis, its upper edge being halfway between two ad- 
jacent cracks. The problem is to find the relations between p, h and a 
if all the elastic constants of the material and its specific surface en- 
ergy are known. 

Let us consider plane deformation. In this case the displacement 
vector components u and v, and the strain tensor components Ox, Oy, 
Oxy are described in terms of analytical functions r (z), ~ (z) by the 
Kolosov-Muskhelishvili formulas [t]: 

2 1 ~ ( u +  iv) = • (z) - -  zq/ (z) -- ~2 (z) ( x =  3--4~,) , (1) 

% + % = 4/?qD' (z), (2) 

% - -  c; x + 2i~sx~ = 2 ['iq~" <z) + ~'  (z)] . (8) 

Here v is the Poisson ratio and g is the shear modulus. 
It should be noted that in view of the symmetry of the system 

Im~p '=0 b' I Z 

I 
l~e~'=O .o. Re~=-IlZP~L- im~'=O 
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and because of the preset boundary conditions the following condition 
is satisfied along the entire boundary of the region: 

% v  = 0 . (4) 

Moreover, along the boundary y = L and outside the crack along its 
continuation another condition 

v = 0 (5) 

must be satisfied. 
From Eq. (1) it follows that 

0v 
2~ T~z = ( •  I m q y ( z ) + I m [ z e ~ " ( z ) . + ~ ; ' ( z ) ] ,  (6) 

and from Eq. (8) 

Oxv = Im [7cp" (z) + ~'  (z)] . (7) 

Consequently, if conditions (4) and (5) are satisfied at the same 
time along a segment of the boundary, as a result of Eqs. (6) and (7) 
at these segments we have 

Im qD' (z) = O. (8) 

Furthermore, it is shown in problems of the equilibrium of a single 
crack [2] that along the crack and its continuation we have 

% = % ,  v = O.  (9)  

In fact, one can introduce an analytical function F(z) = zr + 
+ ~b', whose limiting value at y = 0 coincides with the limiting value 
of the function in the right-hand part of Eq. (3). Then, by virture of 
Eqs. (8) and (4), along the entire real axis Im F(z) = 0 and, conse- 
quently, F(z) -= 0 in the entire region. Hence, Eqs. (9) follow directly. 

In the case of a system of cracks Eqs. (9) are not, generally 
speaking, satisfied. This follows clearly from the following physical 
considerations. If the cracks are sufficiently close to each other 

~m 9'= 0 
t 
~Re~p'=u Re~p':-z/zp OmLp~O 
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( h / a  << t), the material in the region adjacent to the loaded part of 
the crack will be in a state approaching uniaxial compression, for 

which 

%/% = (I -- ~)/~. 

It may be postulated, however, that for cracks sufficiently dis- 
tant from each other Eqs. (9) will be satisfied with a sufficient degree 
of accuracy. If this assumption is made, the following conditions 
should be satisfied: 

- ~ '  (z) = --II.2p, (I0) 

for the loaded crack segments, 

Bq~' (z) = O (11) 

for the unloaded crack segments, and Eq. (8) for the remaining seg- 
ments of the region boundary. Consequently, the problem is reduced 
to the well known Keldysh-Sedov problem of the theory of functions of 
complex variables [8]. 

As an example let us consider a problem analogous to that 
studied in [4]. Let a pressure p ac~ on a segment - -a  ~ x ~ O  of a 
semi-infinite crack situated on the negative part of the real axis. 
The region and the boundary conditions for the plane z are shown in 
Fig. 1. A function 

= ~ + i'q = e '~znL (12) 

maps the band 0 -< y-< h on the upper semi-plane (Fig. 2). Now, we 
can obtain the solution with the aid of the KedyshoSedov formulas: 

cp' (z) = ~ x 

= e '~z'h, b = ~ / e  '~a/h - -  i . (18) 

In the crack tip ~'(z) and, consequently, Oy will have singular- 
ities in the form 

2p [ h \% No 
%=2Bcp ' ( z )=~- /o - j~ -x ]  a r e t g b ~  1/-~ . (14) 

In accordance with [2], a crack will be in the state of equili- 
brium only if the following equations are satisfied: 

K ( ~ E T  V/, 
N0 --- ~ - ,  K =  \ = C L - 7 )  " (15)  
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Here K is the cohesion modulus, E Young's modulus and T the 
specific surface energy. 

From F-as. (14) and (15) we obtain 

pSh ~ET 
n ~ T  aretg e b -  4(l--v 2) 

or, after elementary transformations, 

np, T h cl e 
are tg ~- b pea ~ q  cl2 -- cee 

(c,~ ~' q- 2p, e P" = p , c~ = - ~ - ) .  (10 

In [4], where a problem of steady-state propagation of a similar 

system of cracks was considered, the following expression was obtained 
for the boundary transition (in the static case) at V --> 0: 

n~T are tg b h tee 
pea = ----T--- q- na cl e -- c.P are tg e b.  (17) 

Let us compare these two results, k should be pointed out first 
that an error (pointed out by A. M. Mikhailov) was made in [4]: the 
condition that tangential stresses at the unloaded crack segment must 
be equal to zero 

21a_8 P • 

~z (exp na \*l, ~ = ~p ~, b~ = ~ -  I} , 

a ~ P" [ ( 1  - [ -  ~22) ~ - -  4 ~ 1 ~ ]  ' 

w ~ ' / ,  ( i =  I, 2), - ~ < ~ < 0  (18) 

was not rigorously satisfied, 

Consequently, the solution found in [4] must be regarded as 
approximate. At afa << 1, from Eqs. (18) we obtain accurate to the 
terms of the first order of smallness 

~u  / a I z t \1/, : ~1 \ 
p - ~ ~--~-) / 1  - ~) .  

Hence at V --~ 0, 

P ~-\  h2 ] , - - a ~ < x ~ 0  . (19) 

At a / h  .--,. 0 formulas (16) and (17) give the same revalt, 

f a / ~ T  = I - -  ci~/c~ ~ . 

This coincides with an expression obtained in [5] for a single 
crack. The relative difference in the crack length determined by 
formulas (16) and (17) at a / h  << 1 is given (accurate to terms of the 
first order of smallness) by 

Aa n (o ~ - -  ce 2) a 
---- (20) a 4cl e h " 

At k = /~ and a / h  = 5 this value is approximately 10%, as is 
the maximum value of the ratio Oxy/p determined by Eqs. (19). 

The accuracy of the solutions of the static and dynamic prob- 
lems in [4] has not yet been estimated, 
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